新课导入 相似图形 这种相似有什么特征?
相似图形 这种相似有什么特征?
照相机把人物的影像缩小到底片上
相似图形 这种相似有什么特征?
在幻灯机放映图片的过程中,这些图片有
什么关系?
2. 幻灯机在哪儿呢?
3.我们能给这种有特殊位置的相似图形一个名称吗?
教学目标 了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质。
掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小。
掌握直角坐标系中图形的位似变化与对应点坐标变化的规律。
知识与能力
经历位似图形性质的探索过程,进一步发展学生的探究、交流能力、以及动手、动脑、手脑和谐一致的习惯。
过程与方法
利用图形的位似解决一些简单的实际问题,并在此过程中培养学生的数学应用意识,进一步培养学生动手操作的良好习惯。
发展学生的合情推理能力和初步的逻辑推理能力。
情感态度与价值观
教学重难点 位似图形的有关概念、性质与作图。
利用位似将一个图形放大或缩小。
直角坐标系中图形的位似变化与对应点坐标的关系。
这样放大或缩小,没有改变图形形状,经过放大或缩小的图形,与原图是相似的。
这些图形相似吗?
观 察 它们相似的共同点是什么?
其中相似图形的共同点是什么?
不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形(homothetic figures),这个点叫做位似中心,这时的相似比又称为位似比。
位似图形
位似是一种具有位置关系的相似。
位似图形是相似图形的特殊情形。
位似图形必定是相似图形,而相似图形不一定是位似图形。
两个位似图形的位似中心只有一个。
两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧。
注意
对应点与位似中心共线。
不经过位似中心的对应边平行。
位似图形上任意一对应点到位似中心的距离之比等于位似比。
位似图形的性质
位似的作用 位似可以将一个图形放大或缩小。
请以坐标原点O为位似中心,作□ ABCD的位似图形,并把它的边长放大3倍。
小练习 分析:根据位似图形上任意一对对应点到位似中心的距离之比等于位似比,我们只要连结位似中心O和□ ABCD的各顶点,并把线段延长(或反向延长)到原来的3倍,就得到所求作图形的各个顶点。
1. 连结OA,OB,OC,OD.
2. 分别延长OA,OB,OC,OD至G,C,E,F,使
3. 依次连结GC,CE,EF,FG.
四边形GCEF就是所求作的四边形.
如果反向延长OA,OB,OC,OD,就得到四边形G’C’E’F’,也是所求作的四边形.
作法:
使新图形与原图形对应线段的比是2∶1.
在原图上取几个关键点A,B,C,D,E,F,G;图外任取一点P;
作射线AP,BP,CP,DP,EP,FP,GP;
在这些射线上依次取点A′,B′,C′,D′,E′,F′,G′,使PA′=2PA,PB′=2PB,PC′=2PC,PD′=2PD,PC′=2PC,PE′ =2PE,PF′=2PF,PG′=2PG;
顺次连接点A′, B′, C′, D′, E′, F′,G′,所得到的图形(向下的箭头)就是符合要求的图形。
小练习
如果依次在射线上PA,PB,PC,PD,PE,PF,PG上取点A′,B′,C′,D′,E′,F′,G′呢?
结果是一个向上的箭头.
新图形与原图形是位似图形,位似比是2∶1
你还有其它方法吗?
①确定位似中心,位似中心的位置可随意选择;
②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;
③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;
④符合要求的图形不唯一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形。
位似变换的步骤
小练习
如果两个图形不仅相似,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
位似多边形 A B C D E B1 A1 C1 D1 E1
在平面直角坐标系中,有两点A(6,3),B(6,0)。以原点O为位似中心,相似比为 ,把线段AB缩小。观察对应点之间坐标的变化,你有什么发现?
△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?
在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,则像上的对应点的坐标为(kx,ky)或(-kx,-ky)。
对称
平移
旋转
相似
图形变换
轴对称 中心对称
平移 旋转
相似
课堂小结 1. 位似图形、位似中心、位似比:
如果两个图形不仅形状相同,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。
这个点叫做位似中心。
这时的相似比又称为位似比.
2. 位似图形的性质:
位似图形上的任意一对对应点到位似中心的距离之比等于位似比。
以坐标原点为位似中心的位似变换有以下性质:若原图形上点的坐标为(x,y),与原图形的位似比为k,则像上的对应点的坐标为(kx,ky)或(―kx,―ky)。
画出基本图形。
选取位似中心。
根据条件确定对应点,并描出对应点。
顺次连结各对应点,所成的图形就是所求的图形。
3. 位似图形的画法:
随堂练习 1. 判断下列各对图形哪些是位似图形,哪些不是.
(1)五边形ABCDE与五边形A′B′C′D′E′
(2)正方形ABCD与正方A′B′C′D′
√ ×
(3)等边三角形ABC与等边三角形A′B′C′
√
2. 下面的说法对吗?为什么?
(1)分别在△ABC的边AB,AC上取点D,E,使DE∥BC,那么△ADE是△ABC缩小后的图形。
(2)分别在△ABC的边AB,AC的延长线上取点D,E,使DE∥BC,那么△ADE是△ABC放大后的图形。
(3)分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,那么△ADE是△ABC缩小后的图形。
√ × √
3.如图P,E,F分别是AC,AB,AD的中点,四边形AEPF与四边形ABCD是位似图形吗?如果是位似图形,说出位似中心和位似比.
是位似图形。
位似中心是点A,
位似比是1:2。
4. 哪些图形是位似图形并指出位似图形的位似中心。
√ × √ 位似中心是点O。 位似中心是点P。
5. 作出一个新图形,使新图形与原图形对应线段的比是2∶1。
6. (1)如果在射线OA,OB,OC上分别取D,E,F,使OD=2OA, OE=2OB, OF=2OC,那么,结果会怎样?
结果会得到一个放大了的△DEF,且△DEF的三边是△ABC三边的2倍.即它们的位似比是2∶1。
(2)如果在射线AO,BO,CO上分别取点D,E,F使DO=OA,EO=OB,FO=OC,那么,结果又会怎样?
结果会得到一个与△ABC全等的△DEF,.即它们的位似比是1∶1。
O 7. 任意画一个三角形,将△ABC的三边缩小为原来的一半。
8. 如图,已知△ABC和点O.以O为位似中心,求作△ABC的位似图形,并把△ABC的边长缩小到原来的一半。
9. 如图,选取适当的一点为位似中心,适当的比为位似比,作该图的位似图形,使它和原图形组成一幅轴对称的图形。
习题答案 相似比分别为,位似中心略.
略.
坐标分别为D(1,1)E(2,1)F(3,2)或
D(-1,-1)E(-2,-1)F(-3,-2)